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A New Model of Shouldered Survival

Curves
by Shigeru Kumazawa

Recently, the linear-quadratic equation has been used to construct the dose—response relationships of ionizing radia-
tion. The radiobiological theory on which this relationship is based indicates that at low doses, the risk of a biclogical lesion
being formed should depend linearly on dose if a single event is required or quadratically on dose if two events are required.
The same approach has also been used to construct the shouldered survival curves, which indicate a lower response of
cell killing at low doses of low linear energy transfer (LET) radiation than at high doses because of repair. However, a dif-
ferent approach is possible, derived from the concept of generating the hybrid lognormal distribution, in which the hybrid
form of linear and logarithmic components of a random variable is used. The hybrid form is a formulation of the
phenomenon in which there is a feedhack mechanism against the large change in the random variable. This paper presents
a new model of shouldered survival curves, called a hybrid scale model, which has two parameters: the inactivation constant
and the protective factor. In the model, the surviving fraction, normalized by a protective factor plotted in a hybrid scale,
is assumed to be linear against the dose. This simple model povides an implication of the shoulder of survival curve and

the effect of recovery time of radiation damage, as well as giving a good to the well-known data of split-dose experiments

with mammalian cells.

Introduction

Typical survival curves of exposed mammalian cells may have
a steep slope of a semilogarithmic plot for densely ionizing radia-
tion, but for sparsely ionizing radiation they usually have a small
slope at low doses, followed by a curved shoulder leading to a
substantially steeper slope at higher doses. A shouldered dose
response indicates a lower effectiveness of cell killing at low
doses of low linear energy transfer ({LET) radiation than at high
doses because some of the radiation damage has been repaired.
This repair was demonstrated by Elkind and Sutton (/) in ex-
periments with Chinese hamster cells irradated with two or more
doses of X-rays separated by intervals of time.

The shouldered survival curves, S(D), are usually described
as a function of dose, D, by various models as follows: a) the
single-target plus multitarget single-hit type

S(D) =exp(—D/1Do)[1— {1 —ezp(=D/aDo)}"] (1)

where Dy is the inverse of the slope of the initial slope of the
curve and Dy is the inverse of the sensitivity of each of the n
targets, and &) The linear-quadratic form

S(D) = ezp{—(aD+ BD?)} 2)
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where o and 3 are, respectively, the linear and the quadratic coef-
ficient. Equation 2 may be generalized as a polynomial form
of D.

The report of the United Nations Scientific Committee on the
Effects of Atomic Radiation [UNSCEAR (2))] states that the in-
itial slope, exp(—D/Dy) in Equation 1 and o« in Equation 2 is
still a matter of debate, but this question is immaterial in the
dose—-response models of radiation-induced cancer, as both func-
tions satisfactorily describe the experimental data for surviving
fractions between 1.0 and 0.1.

In contrast to models based on the target theory, Hug and
Kellerer (3) derived a different form of surviving fraction, $(D),
based on a concept of reactivity, R(D), for the slope of the sur-
vival curve and compensational capability, K(D), for reducing
the reactivity as follows:

S(D) =exp[-R'D+ (Ko/7){1 —exp(—yD)}|  (3)

where R’ is the final value of R(D) when the compensational
capability diminishes, K, is the initial compensational capabili-
ty before irradation, and X = Kyexp{—+D) and R(D) = R’ —
Ko exp(—+vD). This model was reported to fit the data of Elkind
and Sutton (1) well.

This paper presents another possibility of the model building,
extended from the concept of generating the hybrid lognormal
distribution, which is defined as InpX+pX ~N(u,0%), 0
<x< o, p>0 (4). The hybrid form of linear and logarithmic
terms of the random variable is a formulation of the phenomenon
in which a feedback mechanism constrains the larger variation
in the range of large values. Then we can expect that there might
be a feedbck mechanism in biological systems that mitigates the
large decrease of surviving fraction incurred by the given dose
because of repair.
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Proposal: A Hybrid Scale Model
Suppose that the surviving fraction, s(D), is given as follows:

In(pSY+pS = a-+bD, (p>0, b<0). 4

For D=0, §=1, a=Inp+por
InS5—p(1-5) = bD. 5

If we differentiate Equation 5 with respect to D and solve it with
respect to dS/dD, then
dSfdD = bS/(1+ pS). (6)
The same equation also results from differentiating Equation 4
with respect to D.

Equation 6 may be interpreted as the slope, dS/dD, of the sur-
vival curve on linear-linear coordinates, reduced by decreasing
the absolute value of b in the reciprocal of (1 + S} via the
negative feedback mechanism of dS/dD with the feedback
parameter of pbecause of repair. Putting the simultaneous equa-
tions of the feedback mechanism, dS/dD=5b'S and
b'=b— pdS/dD, and removing b’, we get Equation 6.

If the slope of survival curve on linear-linear coordinates is

"dS/dD=bS, the surviving fraction is S(D)=exp(bD) or In
S(D)=8&D, b< 0, where b is the inactivation constant. Then the
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differentiation can be written as dln(S)/dD=>b, which means that
the slope of the survival curve on the semilog plot is constant.
Defining the hybrid scale as y=hyb (¢)=In(#) +1 in much the same
manner as the log scale defined by y=In(r), we can write the dif-
ferentiation of Equation 6 as d hyb (p5)/dD=b, which means that
the slope of the survival curve on the semihybrid (a hybrid scale
of surviving fraction) plot is constant. Thus the shoulder of sur-
vival curve disappears if we plot the data on semihybrid paper by
introducing a protective factor, p.

Application of Model

There is much survival data concerning established cells ex-
posed to ionizing radiation, Data suitable to test the model come
from split-dose experiments with V79-1 cells after 2.5 and 23 hr
of incubation at 73°C following a first dose of 5,05 Gy (/). Hug
and Kellerer (3) also used the same data to test their model of
Equation 3 shown above. However, the data must be obtained by
reading the plots of Figure 11 of Elkind and Sutton (/). Table 1
shows these data. The given data are a set of (D,,5), (i=1 1o n),
where D; is the ith dose, and §; is the surviving fraction of cells
exposed to that dose. Dividing Equation 5 by the killing fraction,
1-§, we have
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Ficure 1. Results of fitting the hybrid scale model to survival data of irradiated mammalian cells (1) with different incubation times.
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Putting x,=D:/(1-5), yi=In S), bo= p and b,=b, we have the
linear model.
¥

i o= botbym g, ®
where ¢ is an error term. Equation 8 was used for both the
hybrid scale model and the linear-quadratic model] given by
Equation 2, where for the latter model x;=D;, y;=InS, /D;,
bo=—w and b =—f. The model given by Equations 1 and 3
were not used here because of the complexities of the calculation.

Table 1. Survival data for mammalian cells.”
Time of incubation at 37°C after first 5.05 Gy

0.0 hr 2.5hr 23.0hr
D S D A D hY

1.75 0.62 1.8 0.56 1.8 0.65
14 .29 3.7 0.20 3.7 0.31
5.05 .13 5.1 0.075 5.0 0.168
6.4 0.05% 6.3 0.035 6.3 0.068
8.1 0.0168 7.6 0.014 7.8 0.033
9.7 0.0053 8.9 0.0050 9.0 0.013
11.4 0.0018 10.1 0.0052
i3.0 0.00036

# Data taken frem Figure 11 of Elkind and Sutton (/). D, dose in Gy; §,
survival.

Table 2. Estimated parameters of the hybrid scale model applied to the

data in Table 1.
Incubation Protective Inactivation Correlation
period, hr factor, p constant, B(Gy ') coefficient, r
0.0 2.0728 —0.7549 —0.9955
2.5 1.7396 —0.7938 —-0.9916
23.0 2.4695 ~0.7598 —0.9886

Results and Discussion

Figure 1 shows the results of fitting the proposed model to the
data of the surviving fraction of mammalian cells irradiated with
doses separated by three incubation periods of 0.0, 2.5, 23.0 hr.
Figure la-¢ shows the given data points and the survival curves
estimated by the proposed model. Each set of data points lies on
each fitted curve of surviving fraction for its incubation period.
This means that the proposed model is likely to be applicable to
these data.

Figure 1d shows the linearity of all sets of surviving fraction
on a semihybrid plot (a hybrid scale of surviving fraction,
H=InpS+ pS; see Table 2 for ph although these survival curves
on a sernilog plot have shoulders, The theory of hybrid scale (5)
predicts that the survival curve on a semihybrid plot locates
higher for strong protective systems than for weak protective
systems, where the degree of protection of a system is defined by
the protective factor p. Therefore, the lower location of survival
curve for 2.5 hr suggests that it is less protective than that for 0
hr. The proximity of survival curves for 0 and 23 br reflects that
both give similar protective conditions, that is, the complete
recovery of cells irradiated with 23-hr split-doses.

Table 2 gives estimated parameters of the proposed model to
the data for each incubation period, including the correlation
coefficients between D/{1—5) and linS/(1—S5). All the absolute
values of each of the correlation coefficients are close to 1
because of the goodness of fit of the proposed model to the data.
The protective factor p for 2.5 hr is the smallest in all three cases
because of degraded protective conditions. The inactivation con-
stants b are similar among three cases. If the model given by
Equation 4 is used, that is, a#lng-+ p, the protective factor is
about 2 for O and 23 hr and about | for 2.5 hr; but the inactiva-
tion constants are not so different from those shown in Table 2.
Thus the method of estimating parameters needs to be studied
further.

The linear-quadratic model of the survival curve, applied to
the data in the form given by Equation 8, gives o« = 0.2551, 8 =
00281, and r = —0.9675 for 0 hr; & = 0.2850, 8 = 0.0373, and
r= —09300 for 2.5 hr; and « = 0.1917, 8 = 00329, r =
--0.9778 for 23 hr, where r is the correlation coefficient,
Therefore, the data did not fit the linear-quadratic model as wel)
as the hybrid scale model.

The hybrid scale model can also be applied to the dose-
response curve, which is concave upward on semilog paper, for
low LET radiation. Then the response plotted in a logarithmic
scale is linear against the given dose plotted in a hybrid scale.
This application has been given in another papper (6).

Conclusion

The new concept of a hybrid scale model, extended from the
hybrid lognormal distribution, was applied to data of shouldered
survival curves. The hybrid scale model has two parameters: the
protective factor p and the inactivation constant b. The model
gave a good fit to the data of split-dose experiments with mam-
malian cells (/). The model also provides an explanation of the
shoulder of survival curve and the effect of recovery time. This
model is as simple as the linear-quadratic model of
S(DYy=exp(—~a—BD?) but is applicable to the data both in the
low- and the high-dose ranges. However, the method of
estimating parameters needs to be studied further.
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